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The perturbation of Dirac particles moving in a constant magnetic field is calculated
for simultaneously incident parallel monochromatic circular polarized electromagnetic
and gravitational waves. Resonances are found which depend on the initial energy of
the charged particles, the magnetic field, and the frequencies of the incident waves.
A suited choice of these parameters allows the selection of only one resonance that
is proportional to the product of the squares of the amplitudes of both waves. This
effect is valid for all bound systems of Dirac particles interacting simultaneously with
electromagnetic and gravitational waves. At least in principle this resonance effect can
be used to detect the gravitational waves in the lab. For regions of the universe with
strong electromagnetic and gravitational waves and suited magnetic fields this effect
may play another important part for the acceleration of charged particles.

1. INTRODUCTION

To search for gravitational waves in lab classical or quantum mechanical de-
tectors can be used. Despite the experiments of Weber (1960, 1969) and many
others (Abramoviciet al., 1992; Abramoviciet al., 1996; Braginskijet al., 1972;
Dreveret al., 1973; Levine and Garwin, 1973; Maischbergeret al., 1991; Tyson,
1973) and the theoretical calculations and estimations (Braginskij and Rudenko,
1970; Harryet al., 1996; Schutz, 1997) gravitational waves have never been ob-
served directly in lab. The reason for the difficulties of detecting gravitational
waves is the small cross section of matter with gravitational waves which come
from possible sources (Schutz, 1997) to us. The proposed or running experi-
ments (Babusciet al., 1997; Caldwellet al., 1999; Schnieret al., 1997; Shaddock
et al., 1998) try to avoid these difficulties by increasing the dimensions of the
detectors. This way not only the effect of the gravitational waves is enlarged but
expenses too.
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The motivation of this work was the search for a method to amplify the
gravitational wave without amplifying competing phenomena. It seemed to be
promising to look for a possibility to enlarge the effect of the gravitational waves
on the detector at the “location” of the interaction of the gravitational radiation
with the matter.

This paper is not intended to be an instruction for the construction of a grav-
itational wave detector. Rather it should demonstrate a “nihil obstat” to a method
of gravitational wave detection that is different in principle.

2. GENERAL APPROACH

2.1. The Idea

We consider the well known bound system of a charged particle moving
in a constant magnetic field. From Macedo and Nelson (1990) we know that
perturbation of this system by gravitational waves causes resonance effects. On
the other hand the structure of the general relativistic Dirac equation shows mixed
terms of gravitational and electromagnetic fields. Therefore, the idea is to perturb a
bound system by a gravitationalandan electromagnetic wave at the same time with
the ulterior motive to get a multiplicative selectable reaction of the bound system.

We exemplify first this idea in detail by considering an electron moving in a
homogeneous constant magnetic field inx1 direction which interacts with circular
polarized monochromatic gravitational and electromagnetic waves propagating
parallel to the magnetic field inx1 direction. In the last sections we give a hint on
the generalization to other bound systems.

2.2. Quantum Mechanical Formulation

In the linearized approximation to general relativity (Landau and Lifschitz,
1966; Misneret al., 1973) for weak gravitational fields the metric tensor can be
written

gµν = ηµν + εµν , |εµν | ¿ 1 (2.1)

with

ηµν =


1 0
−1

−1
0 −1

 (2.2)

(greek indices take the values 0, 1, 2, 3). By imposing the condition

ηαβ
(
εαν − 1

2
ηανη

κλεκλ

)
|β
= 0 (2.3)
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(A|α denotes the partial derivation ofA with respect toα), the vacuum field equa-
tions are reduced to normal wave equations for theεµν

ηαβεµν|α|β = 0. (2.4)

Solutions of (2.4) are, for example, monochromatic circular polarized waves
(TT-gauge) inx1 direction (according to the linearized approximation we neglect
terms ofε2 and higher in the following)

ε22 = ε cos[k(x0− x1)+ α]

= ε

2

[
eik(x0−x1)+iα + e−ik(x0−x1)−iα

]
, (2.5a)

ε23 = ±ε sin[k(x0− x1)+ α]

= ± ε
2i

[
eik(x0−x1)+iα − e−ik(x0−x1)−iα

]
, (2.5b)

(+/− left/right polarization,α arbitrary constant phase). With

k = ωG

c
(2.6)

(ωG frequency of the wave).
The relativistic covariant Maxwell equations for the electromagnetic field

Fµν are (Adleret al., 1965; Landau and Lifschitz, 1966)

Fµν‖ν = 1√−g

(√−gFµν
)
|ν = sµ, (2.7a)

F[µν|λ] ≡ Fµν|λ + Fλµ|ν + Fνλ|µ = 0 (2.7b)

(sµ four-current density,g = det gµν , A‖ν denotes covariant derivation ofA with
respect toν). Without charges and currentssµ = 0 and (2.7a) results to

1√−g

(√−gFµν
)
|ν = 0 (2.8)

while (2.7b) is unchanged.
The electromagnetic vector potentialAµ is correlated to the electromagnetic

field tensorFµν

Fµν = Aµ|ν − Aν|µ. (2.9)

For the following calculations we need the vector potential of a circular polarized
monochromatic electromagnetic wave propagating inx1 direction in linearized
approximation. For the metric (2.5) the potential has the same form as in flat space
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and can be written

A2 = A cos[K (x0− x1)+ β]

= A

2

[
ei K (x0−x1)+iβ + ei K (x0−x1)−iβ

]
, (2.10a)

A3 = ±A sin[K (x0− x1)+ β]

= ± A

2i

[
ei K (x0−x1)+iβ − e−i K (x0−x1)−iβ

]
, (2.10b)

A0 = A1 = 0 (2.10c)

and corresponding

A2 = g2µAµ = (−1− ε22)A2− ε23A3, (2.11a)

A3 = g3µAµ = −ε23A2− (1− ε22)A3 (2.11b)

(+/− left/right polarized,β arbitrary phase).
Additionally we need the vector potentialAµ for a constant homogeneous

magnetic field inx1 direction which also has the same form as in flat space for the
metric (2.5)

Aµ =
(

0, 0,
H

2
z,−H

2
y

)
. (2.12)

This Aµ is Lorentz gauged.
The generalized relativistic Dirac equation (Brill and Wheeler, 1957) is

i γ µ9‖µ − e

hc
γ µAµ9 − mc

h
9 = 0, (2.13)

where the generalized Dirac matricesγ µ are calculated according to

γ µ = hµ(α)γ
(α) (2.14)

from the standard matricesγ (ν) and the tetradshµ(ν) which are defined by the metric
gµν of the gravitational field

hµ(α)hν(β)η
(αβ) = gµν , (2.15a)

hµ(α)h
µ

(β) = η(αβ) =


1 0
−1

−1
0 −1

 (2.15b)

(indices in parenthesis are tetrad indices).
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In order to solve Eq. (2.13) for the metric (2.5), the magnetic field (2.12) and
the electromagnetic wave (2.10) we assume weak gravitational and electromag-
netic waves which perturb the charged particle moving in the constant homoge-
neous magnetic field.

Therefore according to the perturbation theory (Sokolov and Ternov, 1968)
we write (2.13) in the form(

i hc
∂

∂x0
−H− O

)
9 = 0 (2.16)

where the unperturbed time independent Hamilton operatorH is defined with
respect to (2.14) and (2.15) as

H = −i hcγ (0)γ (i ) ∂

∂xi
+mec

2γ (0)+ eγ (0)γ (2) H

2
z− eγ (0)γ (3) H

2
y (2.17)

and the perturbation operatorO is written as

O = −1

2
hcγ (0)

{
i ε22γ

(2) ∂

∂x2
+ i ε23γ

(3) ∂

∂x2
+ i ε23γ

(2) ∂

∂x3
− i ε22γ

(3) ∂

∂x3

− eH

2hc
z
(
ε22γ

(2)+ ε23γ
(3)
)+ eH

2hc
y
(
ε23γ

(2)− ε22γ
(3)
)

− e

hc

[
(2+ ε22)γ

(2)A2+ ε23γ
(3)A2+ ε23γ

(2)A3

+ (2− ε22)γ
(3)A3

]}
. (2.18)

H includes the influence of the magnetic field to the Dirac particle andO represents
the influence of the gravitational and electromagnetic wave fields.

First we have to look for the exact solutionsϕ of the unperturbed system(
i hc

∂

∂x0
−H

)
ϕ = 0 (2.19)

with the eigenfunctions

ϕ = e
Enx0

hc ϕn(Er ). (2.20)

The time independentϕn (n is a place holder for all quantum numbers) satisfy the
eigenvalue equation

(En −H)ϕn = 0 (2.21)

and are to satisfy the orthonormality conditions∫
ϕ
†
n′ϕn d3x = δn′,n. (2.22)
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The solution of the9 of the Dirac equation (2.16) can be developed from the
complete function systemϕ according to

9 =
∑

n

cn(x0) e−i Enx0

hc ϕn(Er ) (2.23)

where|cn(x0)|2 is the probability to find the Dirac particle at timet in staten, if
we assume the same normalization as in (2.22)∫

9†9 d3x = 1 ⇒
∑

n

|cn|2 = 1. (2.24)

Inserting (2.23) in (2.16), multiplying withei En′ x0

hc ϕ
†
n′ (Er ) and integration over the

whole space results with respect to (2.22) in

i hc
∂

∂x0
cn′ (x

0) =
∫

d3x ϕ†n′ (Er ) ei
En′ x0

hc

∑
n

Ocn(x0) ei Enx0

hc ϕn(Er ). (2.25)

To solve (2.25) we use the well known iterative solution procedure. For this purpose
we prepare the system that att = 0 the system is in state|i> and all other states
|f> are not occupied:

ci (0)= 1, cf (0)= 0. (2.26)

Assuming that the perturbationO is small we can set in the first iteration step on
the right side of (2.25)

ci (t) = ci (0)= 1; (2.27)

then we get in first approximation for the solution of (2.25)

cf (x
0) = − i

hc

∫ x0

0

∫
d3x dx0 ei Ef x0

hc ϕ
†
f (Er )O ei Ei x

0

hc ϕi (Er ) (2.28)

and the transition probabilitywfi per time unit from state|i> to state| f > is

wfi = c
1

x0
(c∗f cf ). (2.29)

This perturbation calculation of first order breaks down if the perturbation is too
big or the time periodt of the perturbation is too long for the assumption (2.27) to
be valid.

3. CALCULATION OF THE EFFECT

The exact solution of the unperturbed Dirac equation (2.19) withH of
(2.17) is (for another choice of the standard Dirac matricesγ (µ) see Sokolov
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and Ternov, 1968)

ϕp1,n,m,ζ = C e−i p0x0

h e−i p1x1

h u
1
2 bH 1

2 e−
u
2

×

i hH 1
2

[
aF + 2u

d F

du

]
e−icχu−

1
2


−A
A
−B
B

+ F e−idχ


1
1
K
K


 ,

(3.1a)

where we have introduced the following abbreviations (the coordinate system may
be chosen so thateH > 0)

H = eH

2hc
, (3.2a)

u = Hr 2, (3.2b)

r =
√

y2+ z2, χ = arcsin
y√

y2+ z2
, (3.2c)

A = p1+ K (p0+mec)

p2
0 −m2

ec2− p2
1

, (3.2d)

B = p0−mec+ p1K

p2
0 −m2

ec2− p2
1

, (3.2e)

m = ±1

2
,±3

2
, . . . , (3.2f)

a = 1

2
+ |m| ∓ 1

2
−m, upper/lower sign form >< 0 (3.2g)

b = |m| ∓ 1

2
, upper/lower sign form >< 0 (3.2h)

c = m+ 1

2
, (3.2i)

d = m− 1

2
, (3.2j)

F = 1F1(−n, 1+ b, u), Laguerre polynomials (Abramowitz
and Stegun, 1968) (3.2k)

E

hc
= p0

h
= ±

√
4H

(
n+ 1

2
a

)
+ µ2+ p2

1

h2 , µ = mec

h
. (3.2l)
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C is a normalization constant which takes the value

C =
{

2πL
0(1+ b+ n)

n!

[
(A2+ B2)

(
p2

0 − µ2h2− p2
1

)+ K 2+ 1
]}− 1

2

(3.3)

if we integrate over a volume with lengthL in x1 direction. Taking into account
that the wave functionsϕ are eigenfunctions of the following operators which
commute with the Hamilton operator

(a) momentum operator inx1 direction

−i h
∂

∂x1
ϕE = pxϕE, (3.4)

(b) x1 component of angular momentum

LxϕE ≡
[

h

i

(
y
∂

∂z
− z

∂

∂y

)
+ i

h

2
γ (2)γ (3)

]
ϕE

= hmϕE, m= ±1

2
,±1

2
, . . . (3.5)

(c) operator of spin projection in the direction of propagation

MϕE ≡ σ (i ) P(i )ϕE = hK0ζϕE, ζ = ±1, (3.6)

with the kinetic energy

hcK0 = hc

√
p2

0

h2 − µ2, (3.7)

and

σ (i ) =


−γ (2)γ (3)

γ (1)γ (3)

−γ (1)γ (2)

 , (3.8)

and

P(i ) =


−i h ∂

∂x1

−i h ∂
∂x2 + eH

2c z

−i h ∂
∂x3 − eH

2c y

 , (3.9)

we get forK the values

K = ∓
√

E2/c2−m2c2

E/c+mc
for ζ = ±1. (3.10)

Additionally the following condition is satisfied∫
V
ϕ
†
p′1,n′,m′,ζ ′ϕp1,n,m,ζ d3x = δp′1, p1δn′,nδm′,mδζ ′,ζ . (3.11)
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In order to calculate thewfi (2.29) with the perturbation operator (2.18) for
the wave functions (3.1a) with the assumption (2.26) and the approximation (2.27)
we use the cylindric coordinates (3.2b, 3.2c), some recursion and integral formulas
for the Laguerre polynomialsLn

b(u) (Abramowitz and Stegun, 1968) and assume
that the wave functionsϕ are normalized inx1 direction to the lengthL. Then we
get after a lengthy but straightforward calculation

wfi = 2π e2H2ε2

c
SfSi

{
Tif Ni (Ni − 1)δNf ,Ni−2δmf ,mi+2δ

(
Ei − Ef

hc
± k

)
δp1f , p1i± hk

+ Tfi (Ni + 1)(Ni + 2)δNf ,Ni+2δmf ,mi−2δ

(
Ei − Ef

hc
∓ k

)
δp1f , p1i∓ hk

}

+ π e3H A2

hc2
SfSi

Tif NiδNf ,Ni−1δmf ,mi+1

4δ

(
Ei − Ef

hc

+
−
−
+

K

)
δ

p1f , p1i

+
−
−
+

hK

+ 4εδ

Ei − Ef

hc

+
−
−
+

K

δ
p1f , p1i

+
−
−
+

hK

δ k,+2K
k,−2K
k,+2K
k,−2K

cos


+α − 2β
+α + 2β
−α + 2β
−α − 2β



+ ε2δ

Ei − Ef

hc

+k− K
+k+ K
−k+ K
−k− K

δ
p1f , p1i

h(+k− K )
h(+k+ K )
h(−k+ K )
h(−k− K )



+ Tfi (Ni + 1)δNf ,Ni+1δmf ,mi−1

4δ

(
Ei − Ef

hc

−
+
+
−

K

)
δ

p1f , p1i

−
+
+
−

hK

+ 4εδ

Ei − Ef

hc

−
+
+
−

K

 δ
p1f , p1i

−
+
+
−

hK

δ k,+2K
k,−2K
k,+2K
k,−2K

cos


−α + 2β
−α − 2β
+α − 2β
+α + 2β



+ ε2δ

Ei − Ef

hc

−k+ K
−k− K
+k− K
+k+ K

δ
p1f , p1i

h(−k+ K )
h(−k− K )
h(+k− K )
h(+k+ K )


 , (3.12)



P1: FMN

International Journal of Theoretical Physics [ijtp] PP159-339817 May 29, 2001 13:43 Style file version Nov. 19th, 1999

1436 Schorn

Table I. Combinations of Polarization

Signε23 Sign A3

1. Line + +
2. Line + −
3. Line − −
4. Line − +

with the following abbreviations

Sk =
[
1+K2

k +
(
A2

k + B2
k

) (E2
k

c2
−m2

ec2− p2
1k

)]−1

, (3.13a)

Tkr = (Bk +Kr Ak)2. (3.13b)

In the first brace of (3.12) the upper/lower sign denotes+/−ε23 (left/right circular
polarization). In the second brace (3.12) the four lines denote the combinations of
the polarization of the gravitational and electromagnetic waves (Table I). In (3.12)
the abbreviations (3.2) are used and the definition

Nk ≡ nk + 1

2
ak ⇒ Ek

hc
= ±

√
4HNk + µ2+ p2

1k

h2 . (3.14)

The indicesk andr in the equations (3.13a), (3.13b), and (3.14) are place holders
for the quantum numbers i before the beginning of the perturbation and f after
the perturbation. It is clear from (3.12) that the transition probability consists of
four terms: a pure gravitational term induced by the gravitational wave (∼ε2),
a pure electromagnetic term induced by the electromagnetic wave (∼A2), a first
mixed term (∼εA2), and a second mixed term (∼ε2A2). These latter two terms
are the terms of interest since they represent the simultaneous interaction ofboth,
gravitational and electromagnetic, waves with the bound system. The interaction
of an electromagnetic wave alone with a charged particle in a constant magnetic
field is well known (Redmond, 1965; Sokolov and Ternov, 1968). The interaction
of a pure gravitational wave with a classical charged particle in a uniform magnetic
field is calculated by Papadopoulos and Esposito (1981).

In reality neither the gravitational wave nor the electromagnetic wave have
sharp frequenciesω0 = ck0, but a frequency band width1ω aroundω0, that is
we have a wave packet with a Fourier spectrum. We assume that the intensities of
the incident waves are constant within1ω and the phases are incoherent. Then we
can substitute

ε2δ

(
Ei − Ef

hc
± k0

)
→ ugrav(k0)

16πG

c4

×
∫
1k

1

k2
δ

(
Ei − Ef

hc
± k0

)
dk, (3.15)



P1: FMN

International Journal of Theoretical Physics [ijtp] PP159-339817 May 29, 2001 13:43 Style file version Nov. 19th, 1999

New Effect for Detecting Gravitational Waves 1437

whereε is the amplitude of the gravitational wave andu(k0) is the mean spectral
energy density according to

ugrav dk= dρgrav.

Hereρgrav is the mean energy density of the gravitational wave field. In the same
manner we substitute

A2δ

(
Ei − Ef

hc
± K0

)
→ uem(K0)

4π

c2

×
∫
1K

1

K 2
δ

(
Ei − Ef

hc
± K0

)
dK, (3.16)

with

uem dK = dρem,

whereρem is the mean energy density of the electromagnetic wave field.
For the mixed terms in (3.12) of gravitational and electromagnetic waves we

substitute in an analogous manner

εA2δ

(
Ei − Ef

hc

+
−
−
+

K

)
δ k,+2K

k,−2K
k,+2K
k,−2K

→ 4π

c2

√
16πG

c4

×
∫
1k

∫
1K

1

k

1

K 2
δ

(
Ei − Ef

hc

+
−
−
+

K

)
δ k,+2K

k,−2K
k,+2K
k,−2K

× √ugrav(k)uem(K ) dk dK (3.17)

and

ε2A2δ

Ei − Ef

hc

+k− K
+k+ K
−k+ K
−k− K

→ 16πG

c4

4π

c2

×
∫
1k

∫
1K

1

k2

1

K 2
δ

Ei − Ef

hc

+k− K
+k+ K
−k+ K
−k− K


× ugrav(k)uem(K ) dk dK. (3.18)

The upper/lower sign in (3.15) and (3.16) denotes again left/right polarization and
the four lines in (3.17) and (3.18) are explained in Table I.
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4. DISCUSSION

4.1. The Various Terms of the Transition Probability

4.1.1. Pure Gravitational Transitions

The first term in (3.12) describes the transitions induced by the gravitational
waves alone. Taking into account the abbreviations (3.14) and (3.2a) we see from
(3.12) that we get transitions in this case only if

δNf ,Ni−2δ

(
Ei − Ef

hc
± k

)
δp1f , p1i± hk 6= 0. (4.1)

This is true if

k = ω

c
= ∓ 2 eH

Ei − cp1i
. (4.2)

In this case we have also

δNf ,Ni+2δ

(
Ei − Ef

hc
∓ k

)
δp1f , p1i∓ hk 6= 0. (4.3)

(upper/lower sign for left/right circular polarized gravitational waves). If the initial
energyEi and the initial momentumpi of the charged particle in the direction of
propagation of the gravitational wave are set, then the determination of the magnetic
field filters the frequency (4.2) of the gravitational radiation. Only waves with this
frequency cause transitions of the charged particle. In this case the transition
probability is according to (3.12) and (3.15) with the abbreviations (3.13)

wfi = ugrav(k0)
32π2G e2H2

c5k2
0

SfSi
{
Tif Ni (Ni − 1)δNf ,Ni−2δmf ,mi+2δp1f , p1i± hk0

+ Tfi (Ni + 1)(Ni + 2)δNf ,Ni+2δmf ,mi−2δp1f , p1i∓ hk0

}
, (4.4)

k0 = ∓ 2 eH

Ei − cp1i
. (4.5)

If the resonance condition (4.2) is fulfilled we have, from (4.1) and (4.3), energy
changes of±hck, changes of momentump1 of ±hk and, from (4.4), changes of
thex1 component of the angular momentum of±2h.

4.1.2. Pure Electromagnetic Transitions

Transitions caused by the electromagnetic waves alone are described by those
terms in (3.12) which are proportional toA2. In analogy to (4.1) we have the
condition for these transitions

δNf ,Ni−1δ

(
Ei − Ef

hc
± K

)
δp1f, p1i± hK 6= 0. (4.6)
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This is true only if

K = Ä

c
= ∓ eH

Ei − cp1i
. (4.7)

In this case we have also

δNf ,Ni+1δ

(
Ei − Ef

hc
∓ K

)
δp1f, p1i∓ hK 6= 0, (4.8)

(upper/lower sign corresponds to left/right circular polarized waves). If the mag-
netic fieldH , the initial energyEi , and the initial momentumpi are set, the filtered
electromagnetic frequency (4.7) is one-half of the filtered gravitational frequency
(4.2) (difference between dipol and quadrupol transitions). The transition proba-
bility according to (3.12) and (3.16) with the abbreviations (3.13) is

wfi = uem(K0)
16π2 e3H

hc4K 2
0

SfSi
{
Tif NiδNf ,Ni−1δmf ,mi+1δp1f, p1i± hK0

+ Tfi (Ni + 1)δNf ,Ni+1δmf ,mi−1δp1f, p1i∓ hK0

}
, (4.9)

K0 = ∓ eH

Ei − cp1i
. (4.10)

The change of thex1 component of the angular momentum is±h in contrast to
the gravitationally induced transitions. For the changes of energy, momentum, and
spin flip we have results analogous to the gravitational case.

4.1.3. The First Mixed Term of Gravitational and Electromagnetic Transitions

The first mixed term in (3.12) is proportional toεA2. It is obvious that this
term does not vanish in case ofk = ±2K only. The resonance condition is the
same as in the previous case of pure electromagnetic waves, defined by (4.7), that
is, the electromagnetic resonance condition (4.7)and the gravitational resonance
condition (4.2) have to be fulfilled at the same time. In this case the transition
probability according to (3.12) and (3.17) with the abbreviations (3.13) is

wfi = 16π2 e3H

hc4

√
16πG

c4
SfSi

Tif NiδNf ,Ni−1δmf ,mi+1δ

p1f, p1i

+
−
−
+

hK

× δ k,+2K
k,−2K
k,+2K
k,−2K

cos


+α − 2β
+α + 2β
−α + 2β
−α − 2β

∫
1K

∫
1k

1

k

1

K 2

√
ugrav(k)uem(K )
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× δ
Ei − Ef

hc

+
−
−
+

K

 dk dK+ Tfi (Ni + 1)δNf ,Ni+1δmf ,mi−1δ

p1f, p1i

−
+
+
−

hK

× δ k,+2K
k,−2K
k,+2K
k,−2K

cos


−α + 2β
−α − 2β
+α − 2β
+α + 2β

∫
1K

∫
1k

1

k

1

K 2

√
ugrav(k)uem(K )

× δ
Ei − Ef

hc

−
+
+
−

K

 dk dK

+ wfi according to (4.9)

+ wfi according to (4.4). (4.11)

4.1.4. The Second Mixed Term of Gravitational and Electromagnetic Transitions

The second mixed term in (3.12) is proportional toε2A2. The resonance
condition is

δNf ,Ni−1δ

Ei − Ef

hc

+k− K
+k+ K
−k+ K
−k− K

δ
p1f, p1i

h(+k− K )
h(+k+ K )
h(−k+ K )
h(−k− K )

6= 0. (4.12)

This is true only if

+k− K
+k+ K
−k+ K
−k− K

= − eH

Ei − cp1i
. (4.13)

In this case we have also

δNf ,Ni+1δ

Ei − Ef

hc

−k+ K
−k− K
+k− K
+k+ K

δ
p1f, p1i

h(−k+ K )
h(−k− K )
h(+k− K )
h(+k+ K )

6= 0. (4.14)

The four lines correspond to the various polarizations of the circular electromag-
netic and gravitational waves and are explained in Table I. The transition probability
according to (3.12) and (3.18) with the abbreviations (3.13) is

wfi = 64π3G e3H

hc8
SfSi

Tif NiδNf ,Ni−1δmf ,mi+1δ

p1f, p1i

h(+k− K )
h(+k+ K )
h(−k+ K )
h(−k− K )
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×
∫
1K

∫
1k

1

k2

1

K 2
ugrav(k)uem(K ) δ

Ei − Ef

hc

+k− K
+k+ K
−k+ K
−k− K

dk dK

+ Tfi (Ni + 1)δNf ,Ni+1δmf ,mi−1δ

p1f, p1i

h(−k+ K )
h(−k− K )
h(+k− K )
h(+k+ K )

×
∫
1K

∫
1k

1

k2

1

K 2
ugrav(k)uem(K ) δ

Ei − Ef

hc

−k+ K
−k− K
+k− K
+k+ K

dk dK

. (4.15)

The changes in energy, momentum, angular momentum, and spin orientation cor-
respond to the changes of the pure electromagnetic case; this mixed term represents
a gravitationally induced electromagnetic dipol transition. This term can be used
to amplify electromagnetically the action of the gravitational wave. It may be men-
tioned here that the change of momentumpi of, for example,h(k+ K ) accelerates
the particle inx1 direction.

4.2. The Effect Itself

If we want to detect a gravitational wave with a certain frequencyω it is
obvious from the last section that we can choose a combination ofEi , pi , H, and
frequencyÄ of the electromagnetic wave so that only (4.13) is satisfied but not
(4.7). This way we can amplify the gravitational wave without having side effects
of transitions induced by the electromagnetic wave without gravitational wave.
In this case we measure transitions only if gravitational waves are present. In
order to estimate the order of magnitude of this effect we introduce the following
definitions

Ei = (1+ x)mc2, (4.16a)

hc1 = ymc2, (4.16b)

where1 is a combination of±k± K . For the sake of simplicity we assume

p1i = 0 (4.17)

and we set

S := TifSiSf

≈ TfiSiSf , (4.18)

a quantity occurring in each term of (3.12). In the following estimations we assume

y¿ 1, (4.19a)

y¿ x, (4.19b)



P1: FMN

International Journal of Theoretical Physics [ijtp] PP159-339817 May 29, 2001 13:43 Style file version Nov. 19th, 1999

1442 Schorn

which is justified for the examples as we will show later. In thenonrelativistic
case,x ¿ 1, we get for the quantityS in the case of no spin flips

S∼
( c

mc2

)2
. (4.20)

With spin flip we have

S∼
( c

mc2

)2 y2

x2
. (4.21)

In the relativistic case,x À 1, we have for the quantityS in the case of no spin
flips

S∼
( c

mc2

)2 1

x2
, (4.22)

and with spin flip

S∼
( c

mc2

)2 y2

x4
. (4.23)

It is annotated for exact calculations thatSdepends in all cases on the spin orien-
tation. With (3.14) forNi , (3.18) for the elimination of the Delta-function, the res-
onance conditions (4.12), (4.13), (4.14), and the estimations (4.20)–(4.23) the
terms ofwfi can be calculated from (3.12) or (4.15), respectively. So we get in the
nonrelativisticcase

w↑↑fi ∼
16π2 e2ε2Semx

ε0h2c2kK2
, (4.24a)

w↑↓fi ∼
16π2 e2ε2Semy2

ε0h2c2kK2x
(4.24b)

and in therelativisticcase

w↑↑fi ∼
16π2 e2ε2Sem

ε0h2c2kK2
, (4.25a)

w↑↓fi ∼
16π2 e2ε2Semy2

ε0h2c2kK2x2
, (4.25b)

whereSem is the energy flux density of the electromagnetic wave andε0 is the
dielectric constant.

4.3. Noise

There are some competing effects which could cover the gravitationally in-
duced transitions. In the following sections we will consider the most important
of them. Instrumental details of the detector are not taken into account.
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4.3.1. Thermal Collisions

We assume a thermal Maxwell distribution of the velocities of the electrons
for the temperatureT . Then we have to estimate two probabilities.

First we have to calculate the probability that the energy increase or decrease
of the electrons due to the thermal distribution is greater than the energy, for
example, increase which we expect from the gravitationally induced transitions.
This probability must be compared with the probability for these gravitationally
induced transitions (and of course should be smaller). The energy difference of
the gravitationally induced transitions according to (4.14) is approximatelyhÄ,
whereÄ is the frequency of the electromagnetic wave and the assumption was
made that the frequency of the electromagnetic wave is much greater than the
frequency of the gravitational wave. The corresponding transition probabilitywfi

is (4.15). The probability for electrons with energies greater thanhÄ is according
to the well-known Maxwell distribution

w1 = 1

π
1
2

(
1+ 2

√
hÄ

kT

)
e−

hÄ
kT . (4.26)

Second we have to calculate the probability that the energy increase or de-
crease of the electrons due to the thermal distribution is great enough to satisfy
the resonance condition (4.7) for pure electromagnetic waves in the case where
we have tuned the system to fulfill the resonance condition (4.13) for the mixed
term only. The product of this probabilityw2 with the transition probability for
the pure electromagnetic case (4.9) must be compared with the probability for the
gravitationally induced transitionswfi (4.15) (and of course should be smaller).
We getw2 with the Maxwell distribution

w2 = 1

π
1
2

(
1+ 2

√
1

kT

)
e−

1
kT , (4.27)

with

1 = ωEi

Ä
. (4.28)

ω is the frequency of the gravitational wave andEi the initial energy of the electron.

4.3.2. Synchrotron Radiation

In case of high initial energy of the fermions the effect of synchrotron radiation
will dominate the effect induced by the gravitational wave. The formulae for
transitions caused by synchrotron radiation can be found in Sokolov and Ternov
(1968, Chapter II). Therefore, if we want to detect the gravitational waves by the
effect presented in this article we have to use nonrelativistic Dirac particles. It is
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remarkable that for energies

E ¿ E1/2, (4.29)

with

E1/2 = mc2

(
mcR

h

)1/2

, R=
√

N

H , N = 0, 1,. . . (4.30)

according to Sokolov and Ternov (1968, Chapter II, Section 5, Formula 5.19, p. 90)
only transitions without spin flip occur.

For the estimation of the signal-to-noise ratio the transition probabilities in-
duced by synchrotron radiation for both particles with relativistic and nonrelativis-
tic kinetic energies are calculated according to Sokolov and Ternov (1968).

4.3.3. Precision of the Initial Values

The initial values

Q = eH

Ei − cp1i
. (4.31)

must be precisely fixed in order to satisfy the resonance condition (4.13) for the
gravitational case, butnot the resonance condition (4.7) for pure electromagnetic
waves. This limits the band width1Q to

1Q <
ω

c
(4.32)

or

1Q

Q
<

ω

Ä+ ω (4.33)

(ω,Ä are frequencies of the gravitational and electromagnetic wave).

4.3.4. Homogeneity of the Magnetic Field

Inhomogeneities of the magnetic field shift in first approximation the energy
according to (3.14)

1E

hc
= ±

√
2

e(H +1H )

hc
N + µ2+ p2

1

h2 . (4.34)

Therefore, in addition to the condition (4.33) of the previous section which limits
the inhomogneity of the magnetic field for other reasons, the following condition
for 1H must be valid in order to avoid energy shifts greater than the expected
energy increase/decrease induced by the gravitational and electromagnetic waves
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of the orderhÄ (4.14) (whereÄ is the frequency of the electromagnetic wave and
the assumption holdsÄÀ ω)

hc

√
2

e(H +1H )

hc
N + µ2+ p2

1

h2 < hc

√
2

eH

hc
N + µ2+ p2

1

h2 + hÄ. (4.35)

This leads to the condition

1H

H
< hÄ

2Ei + hÄ

E2
i −m2c4

. (4.36)

4.3.5. Strong Electromagnetic Waves

In order to amplify the gravitational waves by electromagnetic waves we need
high energy densities of the electromagnetic field because of the extremely small
amplitudes of the expected gravitational waves. Therefore, the terms proportional
A2, εA2, ε2A2 in (3.12) are no more of the same order of magnitude and, there-
fore, the perturbation calculation is not consistent. For a consistent perturbation
calculation we had to use the exact solution of the Dirac equation for a constant
magnetic fieldandan electromagnetic wave (Redmond, 1965) to calculate the scat-
tering of the gravitational wave. Because of the complexity of the exact solution
an unproportionally high expenditure would be necessary for these calculations.
For strong electromagnetic waves the assumption (2.27) of the perturbation cal-
culation is not true. Therefore, the resonance conditions (4.6) are no more exactly
valid. When the magnetic field and the initial energy of the particle are chosen in
order to satisfy the resonance condition (4.12) for a certain frequency of a elec-
tromagnetic and gravitational wave and thus to generate transitions proportional
ε2A2, this amplification effect could be overlapped by transitions proportionalA2

caused by the strong electromagnetic waves out of the resonance frequency (4.7).
According the calculations of Redmond (1965, p. 1169, Formula 5.32) the ampli-
fication effect can be used for the detection of the gravitational waves better, more
for the functionsR, K , J (formulae 3.10, 3.12, 5.12 of Redmond, 1965)out of the
resonancethe following conditions are satisfied

|R| ¿ 1, (4.37a)

|K |√
hc
eH

¿ 1, (4.37b)

|J| ¿ 1. (4.37c)

If we assume for the electromagnetic wave

A(ω1, ω2, t) ∼ A
∫ ω2

ω1

a(ω)2

(
−T

2
,+T

2

)
eiωt dω, (4.38)
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these restrictions (4.37) lead to the conditions (the resonance frequencyω0 is out
of the interval (ω1, ω2))

1À
∣∣∣∣∣ eA

mc2
ω̄a(ω̄)

(∫ (ω2−ω0) T
2

0

siny

y
dy−

∫ (ω1−ω0) T
2

0

siny

y
dy

)∣∣∣∣∣ , (4.39a)

√
hc

eH
À
∣∣∣∣∣eA

mc
a(ω̄)

(∫ (ω2−ω0) T
2

0

siny

y
dy−

∫ (ω1−ω0) T
2

0

siny

y
dy

)∣∣∣∣∣ , (4.39b)

1À
∣∣∣∣∣e2A2a2(ω̄)

hmc

(
ω1+ ω2

c

∫ (ω1+ω2) T
2

0

siny

y
dy− ω1

c

∫ ω1T

0

siny

y
dy

− ω2

c

∫ ω2T

0

siny

y
dy

)
+ c

hm

(
e2AHa(ω̄)

mc2(ω0− ω̄)

)2(
2ω0− ω1− ω2

c

×
∫ (2ω0−ω1−ω2) T

2

0

siny

y
dy− ω0− ω1

c

∫ (ω0−ω1) T
2

0

siny

y
dy

− ω0− ω2

c

∫ (ω0−ω2) T
2

0

siny

y
dy,

)∣∣∣∣∣ (4.39c)

whereω0 is the resonance frequency according to (4.13), (4.15) and ¯ω = ω1+ω2
2 . It

was assumed thata(ω) is approximately constant in the interval (ω1, ω2). There-
fore, the amplification effect is usable in principle if

ω̂T À 1, (4.40)

(ω̂ = ω1− ω0, ω2− ω0, . . . according to the upper limit of the integrals in (4.39).
This determines a lower limit for the interaction time of the electromagnetic wave
with the Dirac particle and thus a lower limit for the duration to keep stable the
system of fermions, magnetic field, and electromagnetic wave.

4.3.6. Gravitational Radiation of the Electromagnetic Field

Generally it is not necessary to take into consideration in the linear approxi-
mation of the gravitational field the gravitational radiation of the electromagnetic
field if the energy densitiy of the electromagnetic field does not exceed the mag-
nitude of the energy density of the gravitational wave itself (in this approximation
the gravitational action of the gravitational field is also neglected). But even if the
energy density of the electromagnetic wave is higher than the energy density of
the gravitational wave (with frequencyω) it can be determined with the help of
the resonance conditions (4.1), (4.6), and (4.12) which kind of gravitational field



P1: FMN

International Journal of Theoretical Physics [ijtp] PP159-339817 May 29, 2001 13:43 Style file version Nov. 19th, 1999

New Effect for Detecting Gravitational Waves 1447

caused the transitions if the gravitational field induced by the electromagnetic wave
has a different frequencyÄ (the gravitational field of an electromagnetic wave,
Ketsaris, 1974).

4.3.7. Line Width and Travel Time

The finite life timeτ of the energy levels of the electron causes, according to
the uncertainty relation, a broadening1E of the energy levels

τ1E > h. (4.41)

This line width1E must of course be smaller than the energy difference of the
two resonance conditions (4.7) and (4.13) since we want to exclude transitions
induced by pure electromagnetic waves while including those of gravitationaland
electromagnetic waves. Therefore, we want

1E < hω, (4.42)

with ω the frequency of the gravitational wave.
On the one hand the finite life timeτ is correlated to the transition

probabilityw

τ = 1

w
. (4.43)

As long as the transition probabilities of the competing effects of the previous
sections are smaller than the probability of the gravitationally induced transitions
(4.15) which is necessary for a detection of the effect, the relation (4.42) is valid.

On the other hand the finite life timeτ is limited by the duration of the
measurement or by the travel timeTtr of the electron. With (4.41) and (4.42) this
leads to a first lower limit forTtr

Ttr > ω−1. (4.44)

But the finite travel time causes violations of the resonance conditions (4.7)
and (4.13) due to the fact that we have to replace the integration with respect
to time from−∞ to +∞ by the interval, for example,−Ttr

2 , +Ttr
2 . Therefore, we

have transitions out of the resonance since the Delta-functions of (3.12) are no
more valid. We must estimate the probabilitywemout for transitions induced by
pure electromagnetic waves while the initial values were chosen to satisfy (4.13).
This out-of-resonance probability which violates the resonance condition (4.6) and
(4.8) by the amount ofhω is greater than zero since due to the finite integration
timeTtr the conditions (4.6) and (4.8) are no more strictly valid. Finallywemout must
be compared with the probabilitywfi (4.15) for gravitationally induced transitions
and of course must be smaller. This fixes a more serious second lower limit for the
travel timeTtr.
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Table II. Numerical Values for the Amplification of Gravitational Waves by Electromagnetic Radiation

Sem w↑↑ w↑↓

x Ä (Hz) (W/m2) (1/s) (1/s) SNR H (Gauss) R (m) 1Ä
Ä

1Q
Q

1H
H y

10−6 105 106 10−6 10−26 ¿100 10−2 10−2 10−3 10−2 10−10 10−16

10+3 105 106 100a 10−38 ¿100 100 10+4 10−3 10−2 10−19 10−16

10−3 1010 106 10−13 10−29 ≥101 10+3 10−4 10−8 10−7 10−8 10−11

10−6 1013 1015b 10−13 10−17 ¿100 10+6 10−10 10−11 10−10 10−2 10−8

10−1 1013 109c 10−14 10−28 ¿100 10+6 10−5 10−11 10−10 10−6 10−8

10+3 1013 107d 10−15 10−37 ¿100 10+9 10−4 10−11 10−10 10−11 10−8

Note: The entries are explained in Section 4.4.
aThis is only a theoretical value. In reality the interaction timet must be much smaller to be consistent
with the perturbation theory.

bA laser with a power of 103 W is assumed. This power is focused on an area of (104 × R)2.
cA laser with a power of 103 W is assumed. This power is focused on an area of (102 × R)2.
dA laser with a power of 103 W is assumed. This power is focused on an area of (101 × R)2.

4.4. Quantification of the Effect

In Table II we give numerical values for some cases of amplification of grav-
itational waves by electromagnetic waves. We assume that the incident electro-
magnetic wave, the gravitational wave, and the magnetic field are parallel and the
waves are approximately monochromatic and circular polarized. For the computa-
tion of the transition probabilitieswfi (4.15) of an electron we assume furthermore
(4.17). Forx andy the definitions (4.16) are used. For the gravitational radiation
we assume a wave with frequencyωgrav= 103 Hz, an amplitudeε = 10−22, and
a pulse timetgrav= 10−3 s. A possible source of this gravitational radiation could
be the birth of a neutron star in the Virgo cluster (Schutz, 1997).R in Table II is

R=
√

2Nhc

eH
(4.45)

the mean radius of the electron in the magnetic fieldH . w↑↑ orw↑↓ respectively are
the transition probabilities without or with spin flip (these values are proportional to
ε2). These quantities are in per second and have to be multiplied by the interaction
time tgrav to give the transitions.Ä is the mean frequency of the electromagnetic
wave,1Ä is the bandwidth of the electromagnetic wave, andSem its energy flux
density per time and surface unit. With

Q = eH

Ei − cp1i
(4.46)

1Q
Q indicates the necessary accuracy of keepingQ constant in order to exclude

transitions (4.9) with the resonance condition (4.7) caused by the pure electro-
magnetic wave with frequencyÄ while those of the mixed terms (4.15) with
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resonance condition (4.13) and frequencyÄ+ ω are active.1H
H indicates the nec-

essary homogeneity of the magnetic field to detect the energy increase/decrease of
approximatelyhÄ of the electrons. The signal-to-noise ratio (SNR) is the ratio of
the transition probabilityw↑↑ induced by the interaction with the electromagnetic
and gravitational wave to the transition probability caused by the competing effects
(noise). Here we have assumed a temperature of 10−3 K and a travel time of the
electrons of 106 s.

If we want to detect gravitational waves with frequencyω we can choose
several combinations of initial values of the electron energyEi and the frequency
of the electromagnetic waveÄ where inabsenceof the gravitational wave neither
the resonance condition (4.13) for mixed terms nor the resonance condition (4.7)
for pure electromagnetic waves is satisfied butwith incident gravitational waves
the resonance condition (4.13) is fulfilled, butnot the resonance condition (4.7).
The latter case for the presence of the gravitational wave then determines the
necessary magnetic fieldH . In case of transition the electron absorbes or emittes
approximately the amounthÄ of energy. The total absorbed energy1E is the
difference of the product of the probability for absorbing this amount and the
product of the probability for emitting this amount.

The rows in Table II show the data for some combinations of initial values
for the energy of the electron (indicated byx according (4.16a)), the frequency
Ä, and the energy flux densitySem of the electromagnetic wave (for lasers and its
data cf. e.g., Brunner and Junge, 1989), where the quantitiesw↑↑, w↑↓, H , and
R are calculated from the initial values, and SNR is calculated from the initial
values with respect to the noise effects and the assumption that1Ä

Ä
, 1Q

Q , and1H
H

are limited by the indicated values. Furthermore, we assume for the SNR thatSem

does vary less than 1% (photon shot noise is far below this limit).y is shown in
the table to demonstrate the validity of (4.19a) and (4.19b).

The acceleration of the electrons inx1 direction is for all rows

1pi = 1E

c
(4.47)

where1E is the energy absorbed by the electron from the waves.
Row 3 of Table II indicates the combination of electron initial energy, fre-

quency and power of the amplifying electromagnetic wave, and signal-to-noise
ratio where the detection of gravitational waves could be possible. The SNR in
this case is slightly better than the SNR of LIGO II or LISA in the gravitational
wave frequency range of 103 Hz. In all other cases the noise mainly by thermal
collisions according to (4.26) and (4.27) predominates the effect.

Of course for the high energies of the electromagnetic field used in the ex-
amples of Table II we had to consider higher orders of the electromagnetic wave
amplitudeA in the perturbation calculation to be consistent with the order of mag-
nitude of the gravitational wave (for the highest energies in Table II we had to go
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up to the 10th order of the electromagnetic terms), but for a suited choice of the
frequenciesÄ,ω, and the magnetic fieldH all these additional frequencies do not
satisfy the resonance condition.

4.5. Generalization of the Effect

First we see from (4.24) and (4.25) that the effect is proportional toe2. There-
fore, instead of electrons heavy ions could be examined with respect to their
suitability for the detection of gravitational waves.

Second when we have electromagneticandgravitational waves the structure
of the generalized Dirac equation (2.13) implies always mixed terms of combina-
tions of the frequencies and amplitudes of both waves in the transition probability.
Therefore, whenever we have a bound system with resonance effects when inter-
acting with a electromagnetic wave, this system in principle can be used for the
detection of gravitational waves because of the occurrence ofmultiplicativeterms
of theamplitudesof the electromagnetic and gravitational waves and thedifferent
resonance conditions for the pure electromagnetic wave and the mixture of elec-
tromagnetic and gravitational wave. In all these cases the parameters of the bound
system can be chosen so that resonance will only occur in the presence of both a
gravitational and the electromagnetic wave but not in the case of absence of the
gravitational wave.

For example, the bound system of electrons in an atom could be taken into
account for the detection of gravitational waves. Besides the well-known resonance
frequencies for the excitation of the electrons by electromagnetic waves there are
slightly different resonance frequencies in the presence of electromagneticand
gravitational waves and the transition probabilities for these resonance conditions
are proportional to the product of the amplitudes of both waves. Of course the
line broadening of the electron levels will complicate the experimental prove of
the existence of gravitational waves with this effect, but in principle this or other
bound systems can be checked for their suitability for a detection of gravitational
waves on earth.

5. CONCLUSION

A bound system of Dirac particles interacting with a plane gravitational and
electromagnetic wave has resonances corresponding to the frequency of the elec-
tromagnetic wave alone, to the frequency of the gravitational wave alone, and to
a combination of the frequencies of both waves. The resonance effect for the lat-
ter case is proportional to the product of the strength of the two fields. A suited
combination of the parameters of the bound system and the frequencies of the two
waves allows to select only this resonance case.

We have exemplified this effect in the previous sections for the bound sys-
tem of an electron moving in a constant magnetic field which interacts with
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monochromatic circular polarized plane electromagnetic and gravitational waves.
The quantification of the effect for a gravitational wave generated, for example, by
the birth of a neutron star in a neighbouring galaxy amplified by an electromagnetic
wave allows for a suited choice of the parameters as shown in Table II in principle
the detection of the gravitational wave. The SNR for a gravitational frequency
range of 103 Hz is slightly better than that of LIGO II and LISA in this range. The
relation of the transition probabilitywfi(em+grav) in case of the presence of both
waves to the transition probabilitywfi(grav) caused by the gravitational wave alone
is proportional to the quotient of the energy flux densitySem of the electromagnetic
wave and the product of the magnetic fieldH and the square of the frequencyÄ
of the electromagnetic wave

wfi(em+grav)

wfi(grav)
= Sem

HÄ2
(5.1)

Of course it is mentioned that competing effects may impede an experimental
result.

The calculations in this article rely on weak gravitational waves. It can be
assumed that in regions of the universe with strong electromagnetic wavesand
strong gravitational waves and suited magnetic fields the occurrence of terms with
the product of the amplitudes of both waves in the Dirac equation (2.16) plays
an important part for the acceleration of charged particles. But this case which is
beyond the perturbation calculation is for further research.
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